Nephrotic syndrome

1- Glomerular capillaries are lined by endothelial cells, that contains "fenestrations"
2- Glomerular basement membrane (GBM) forms a continuous layer between:
 - Endothelial and mesangial cells on one side and
 - Epithelial cells on the other.
3- The membrane has 3 layers:
 1- (Central lamina densa)
 2- (Lamina rara interna, which lies between the lamina densa and the endothelial cells)
 3- (Lamina rara externa, which lies between the lamina densa and the epithelial cells)
4- Visceral epithelial cells (Podocytes) cover the capillary and project cytoplasmic "foot processes", which attach to the lamina rara externa between the foot processes "filtration slits"

- Mesangial (mesangial cells and matrix) lies between the glomerular capillaries on the endothelial cell side of the GBM and forms the medial part of the capillary wall.
- The mesangium may serve as a supporting structure for the mesangium and probably has a role in:
 1- Regulation of glomerular blood flow and filtration and
 2- Removal of macromolecules (such as immune complexes) from the glomerulus, either through a intracapillary phagocytosis or by transport through intercellular channels to the juxtaglomerular region.

Bowman's capsule, which surrounds the glomeruli, is composed of:
1- A basement membrane, which is continuous with the basement membranes of the glomerular capillaries and the proximal tubules
2- The partial epithelial cells, which are continuous with the visceral epithelial cells.

- The endothelial cell, basement membrane, and epithelial cell of the glomerular capillary wall possess strong negative ionic charges.
- These charges are a consequence of two negatively charged moieties:
 1- Protonated (heparan sulfate)
 2- Glycoproteins containing sialic acid.

Pathophysiology:

1- Proteinuria:
 - In patients with NS, the structural changes:
 1- Damage to the GBM
 2- Thickening of the GBM
 - Certain HLA types (HLA-D, HLA-B, and HLA-A12) are associated with an increased incidence of NS.
2- In focal segmental glomerulosclerosis:
 1- A plaque factor (produced by lymphocytes) may be responsible for the increase in capillary wall permeability.
 2- Mutations in podocyte proteins (Podocin, podocin 4).

Types of Nephrotic Syndrome:

1- Primary idiopathic nephrotic syndrome (90%):
 - Minimal change nephrotic syndrome (MCNS) is the most common histologic form.
 - More than 80% of children under 7 years of age with nephrotic syndrome have MCNS.
2- Secondary nephrotic syndrome (10%):
 - May be seen with systemic lupus erythematosus, Schönlein-Henoch purpura, infections (hepatitis B, hepatitis C, malaria), Wegener and other vasculitides, allergic reactions, diabetes, amyloidosis, malignancies, congestive heart failure, constrictive pericarditis, renal vein thrombosis.
3- Congenital nephrotic syndrome:
 - The Finnish type is an autosomal recessive disorder most common presentations during the first 2 months of life.
 - Prenatal insult is supported by α1-maternal alpha-fetoprotein.

Clinical Manifestations:

1- Proteinuria:
 - In focal segmental glomerulosclerosis:
 1- Proteinuria
 2- Hematuria
 3- Renal vein thrombosis
 - Associated conditions:
 1- Allergy? Hodgkin disease, usually none
 2- Repeated or prolonged low serum levels of total complement (CH50).

Laboratory Findings:

1- Immunoglobulins:
 - HLA-B, B12 (1.5)
 - Mutations in podocin, a-actinin-4, other genes
 - HLA-DR5 (12-37)
 - Not established

Renal Pathology:

1- Light microscopy:
 - Normal
 - Focal sclerotic lesions
 - Thickened GBM, spikes
2- Immunofluorescence:
 - Negative
 - IgM, C3 in lesions
3- Electron microscopy:
 - Foot process fusion
 - Thickening of the GBM
4- Response to steroids:
 - May be slow regression
 - Not established

Pathology:

Types of proteinuria:

1- High selective proteinuria:
 - Glomerular permeability of GBM would be selectively altered by increased urinary load.
 - The common infectious complications:
 1- Anasarca: inability to open the eyes
 2- Renal failure
 3- Hemorrhage
 4- Reduced immunity

2- Hypoalbuminemia:
 - Increased urinary loss of proteins is the main cause
 - Other factors:
 1- The capacity to increase hepatic synthesis appears insufficient to compensate for the large urinary losses.
 2- Increased protein catabolism.

A- Edema:
 - Hypoalbuminemia, which causes a decrease in plasma oncotic pressure and transudation of fluid from the interstitial compartment to the interstitial space.
 - Edema is enhanced by:
 1- Causes massive generalized edema
 2- Reduced Renal perfusion pressure
 3- Activating renin-angiotensin-aldosterone system
 4- Expansion of plasma volume
 5- Loss of plasma water into the interstitial space

B- Other effects:
 1- Like albumin, the concentration of other plasma proteins are decreased:
 1- IgG and some components of complement decreased immunity
 2- Some anti-coagulant factors hypercoagulability state
 3- Vitamin D combining protein hypercalcemia
 4- Transferrin anemia

3- Hyperlipidemia:
 - Serum cholesterol, triglycerides are elevated for two reasons:
 1- Hypoalbuminemia stimulates generalized hepatic protein synthesis, including synthesis of lipoproteins.
 2- Increased urinary loss of albumin and "lipoprotein lipase" reduce plasma levels of this enzyme and lipid Catabolism is diminished.
 - Two pathologic patterns:
 1- Hypercholesterolemia alone
 2- Combined hypercholesterolemia hypertriglyceridemia
 - It plays a role in:
 1- Hyperlipidemia state
 2- Progression of glomerulosclerosis.

Summary of Primary Renal Diseases That Present as Idiopathic Nephrotic Syndrome

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>MINIMAL CHANGE</th>
<th>FOcal SEGMENTAL</th>
<th>MEMBRANOUS</th>
<th>MEMBRANOPROLIFERATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Type II</td>
<td>Nephrotic Syndrome</td>
<td>GLOMERULONEPHRITIS</td>
<td>GLOMERULONEPHRITIS</td>
</tr>
<tr>
<td>Children</td>
<td>15%</td>
<td>10%</td>
<td><5%</td>
<td>10%</td>
</tr>
<tr>
<td>Adults</td>
<td>15%</td>
<td>15%</td>
<td>50%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Clinical Manifestations:

1- Edema:
 - May be slow regression
 - Not established

Complications:

1- Infections:
 - Causes:
 1- Decreased immunity
 2- Urinary tract infections
 3- Enteric bacterial infections

2- Hypovolemia:
 - Causes:
 1- Hypoalbuminemia
 2- Plasma oncotic pressure decreases

3- Electrolyte disturbances:
 - Hyponatremia, Hypokalemia, Hypocalcemia

4- Hypercoagulability states and thrombosis:
 - Causes:
 1- Urinary loss of anti-coagulant proteins
 2- Hemostasis and hypocoagulopathy
 3- Hyperlipidemia (increased viscosity) and increased platelet aggregation

5- Acute renal failure:
 - Often precipitated by Hypovolemia
 - Reduction in the glomerular filtration rate has also been hypothesized
1. Urinalysis:
 a. Proteinuria:
 - Protein: qualitatively +++... quantitatively >0.1g/dL.
 - The ratio of urinary protein to urinary creatinine: >2
 b. Hematuria:
 - RBC may be increased in nephritic-nephrotic syndrome
 - Occasionally appears in simple nephrosis

2. Blood:
 - Hyperalbuninemia: albumin < 10g~20g/L
 - Hyperlipidemia: cholesterol > 5.7mmol/L
 - ESR > 100mm/h
 - Renal functions and serum complement 3 may be reduced → In nephritic-nephrotic syndrome,
 - Serum electrolyte determination: to evaluate hypotension, hypokalemia, hypocalcemia

Criteria of diagnosis:
1. Massive proteinuria: Urinalysis reveals >3+ or >4+. Protein excretion exceeds 100mg/kg/d.
2. Hyperalbuninemia: Serum albumin level is less than 30g/L (usually 10g~20g/L)
3. Hypercholesterolemia: the serum concentration of cholesterol is > 5.7mmol/L
4. Edema with various degrees
 - The first two items are the most necessary for diagnosis
 - The diagnosis of different clinical types of NS

Differential Diagnosis:
Primary NS should be differentiated from:
1. Secondary NS or
2. GN with nephrotic picture, such as HSP nephritis, SLE nephritis, APSGN.

Treatment:
A. General measures
1. Activity:
 - Do not restrict activity unless the patient is severely edematous or with severe hypertension or infections.
 - To prevent thrombosis, patients restricted to bed rest should change position frequently.
2. Diet:
 - The diet should provide adequate energy (calorie) intake and adequate protein (1-2 g/kg/d).
 - Sodium restriction (Low sodium or no sodium diet) is indicated for patients with edema or hypertension, but should be adjusted according to the serum levels of sodium. Long-term sodium restriction is not recommended.
 - Fluid restriction is required when the edema is severe with oliguria.
 - Replacement of vitamins and minerals.
3. Diuretic therapy:
 - Diuretic is indicated when edema is severe, esp. with ascites
 - It can be used for symptomatic relief until steroid diuresis occurs
 - Hydrochlorothiazide (HCT): 2-4mg/kg/d
 - Antisterone: may be added if HCT is not effective.
 - Salt-poor albumin at 0.5-1g/kg/iv per 1 h (when serum albumin<20g/L), followed by iv injection furosemide 1-2mg/kg/dose. Multiple use is not recommended.
 - A renal blood vessel dilator should be given (dopamine 2-4 μg/kg/min) in patients with refractory edema, combined with furosemide.
 - Hypovolemic shock or postural hypotension should be monitored during diuresis.
4. Treatment of complications
 - Anti-infection: antibiotics that cover both gram-positive and negative organisms should be given; But continuous prophylactic antibiotics are not recommended.
 - Anti-coagulation therapy: heparin, persantin, exercise of extremities, Therapy for electrolyte disturbance.

B. Specific therapy:
1. Glucocorticoid therapy
2. Cytotoxic agent therapy
3. Pulse therapy

1. Glucocorticoid therapy
- At initial diagnosis, Prednisone or Prednisolone oral therapy is the first line:
- Before starting steroid therapy, a tuberculin skin test should be done.

A. Medium-term prednisone therapy
- Commonly used in China, including 3 phases:
 1. 2mg/kg/d (maximum 60 mg/day) daily for 4 weeks
 - Remission can be achieved during this phase in most children with PNS, then entered the next phase
 - If remission isn’t achieved, continue the initial dosage, but not over 8 weeks before entered the next phase.
 2. 1.5-2mg/kg, qod (single dose, every other morning, alternate-day therapy) for another 4 weeks.
 3. Reduced by 2.5~5 mg q2-4w until stopped.
- Medium term therapy: total course is 6m
- Long term therapy: total course is 9~12m

B. Short term prednisone therapy:
- Prednisone dosage at:
 1. 2mg/kg/d (maximum 60 mg/day) daily for 4 weeks
 - Regardless of the responses, entered the next phase.
 2. 1.5mg/kg, qod for another 4 weeks, then stopped.
- The total therapy course is 8~12 weeks.
- May be associated with a higher rate of early recurrence or relapse.

NS types classified by response to steroid therapy
1. Steroid sensitive NS:
 - Complete remission is achieved within the first 8 w of the initial steroid therapy.
2. Partially steroid sensitive NS:
 - After 8w of the initial steroid therapy, edema subsides, but urinary protein is still >+++.
3. Steroid resistant NS:
 - Failure to achieve remission (urinary protein ≥+++ in spite of 8 weeks of standard prednisone therapy.
 - Steroid dependent NS: Patients who has 2~3 consecutive relapses occurring during the period of steroid taper or within 14 days of its cessation is defined as...
 - Relapse or recurrence: Patients who has urinary protein≥+ after 4w of steroid cessation or during maintenance
 - Frequent relapses or recurrences: Patients who has 2 or more relapses or recurrences within 6 months, or ≥3 within 12 months is said to have ...

Adverse effects of long term corticosteroid treatment
- Cushingoid features: obesity, round face, striae
- Increased susceptibility to infections
- Hypertension
- Osteoporosis
- Hypokalemia
- Retarded growth
- Cataracts
- Pneumocystis pneumonia
- Diabetes mellitus
- Peptic ulcer disease
- Increased susceptibility to infections
- Hypertension
- Osteoporosis
- Hypokalemia
- Retarded growth
- Cataracts
- Pneumocystis pneumonia
- Diabetes mellitus
- Peptic ulcer disease

2. Cytotoxic agent therapy:
- Cyclophosphamide, cytosporin, chlorambucil, nitrogen mustard...
- Indication:
 - Intractable NS (steroid resistance, frequent relapses or recurrences)
 - Steroid dependent NS with signs of steroid toxicity.
- The adverse effects: sexual gland damage; bone marrow depression; hemorrhagic cystitis; nausea, vomiting, gastritis; alopecia; liver damage.

3. Pulse therapy:
1. Methylprednisolone: 15~30 mg/kg/d (<1.0g/d) add 10% glucose 100~250 ml in drip, for 3 days.
 - Repeated same as above every 1~2w weeks if necessary.
2. CTX: 0.5~0.75g/m² in drip, once monthly, for 6 months if necessary.

Prognosis:
- Varies depending on the histological type
 - >90% of MNs respond to corticosteroid therapy
 - Only 30% of children never have a relapse after the initial remission
 - Approximately 50% have 1-2 relapses within 5 years
 - 20% continue to relapse 10 years after diagnosis
- Approximately 3% of patients who initially responded to steroids become steroid resistant.
- Only approximately 20% of patients with FSGS undergo remission of proteinuria
- Approximately 50% of patients with MsPGN undergo complete remission of proteinuria during steroid therapy
- MPGN has the most worse prognosis. no difference was evident in the outcome between treated and untreated patients;

Indications of renal biopsy:
- Unsuccessful therapeutic trial of steroids:
 - Steroid resistance
 - Frequent relapses or steroid dependency
 - A child >10y at onset
 - Coexistence of significant hematuria, hypertension, azotemia and depressed serum C3 at onset.
 - Secondary causes of nephrotic syndrome.

Sources:
1. Nelson
2. Lang pathophysiology
3. Sherein Shalaby lecture